# WW WESSLER ENGINEERING

More than a Project™

## BASICS OF PFAS IN DRINKING WATER AUGUST 2024

### PRESENTER



Kurt Wanninger Wessler Engineering Senior Project Manager

Kurt serves in Wessler's Drinking Water group and has more than 30 years of professional experience in the water, wastewater and stormwater utility industry as well as more than 16 years in municipal government. He assists community leaders with developing successful plans to help manage their utility systems.

2

# ABOUT WESSLER ENGINEERING

- » Civil and Environmental Engineering Consulting Firm
- » Specialists in water engineering: Drinking Water, Wastewater, & Stormwater
- » Founded in 1975 (49 years)
- » Headquartered in Indianapolis
- » Six offices in Indiana
- » Two offices in Ohio
- » 115 employees (~45 engineers)
- » Employee owned



### WATER REGIONALIZATION?

#### **Definitions:**

- » The process of integrating or coordinating water projects across multiple jurisdictions or communities.
- » It involves pooling resources, generating efficiencies, and optimizing the quality of water supply and wastewater management services.
- » The process of coordinating water projects across jurisdictions or communities
- » Question: Is an interconnection with an adjacent utility considered regionalization?





### WATER REGIONALIZATION?

#### Management:

» Pool of water resources

#### **Compliance:**

» To meet federal drinking water standards or as a step for mitigation from a contamination source

#### Sustainability:

 Opportunity to reduce risk and provide resiliency for a drinking water system

#### **Economics:**

» Enable water systems to operate at appropriate economies of scale, potential cost savings



# **Pros and Cons of Regionalization**

» Growth

- Pro Opportunity and flexibility to grow
- Con-Could restrict a community's growth
- » Environmental
  - Pro Emergent Chemicals
  - Con- One source of supply
- » Water sheds
  - Pro Resilience
  - Con Shifting resources
- » Managerial
  - Pro Economies of scale
  - Con One water source





### WHY?



#### Water – Quality Issues

- PFAS testing conducted by OEPA (2021) and Pace **>>** Analytical Services (2023)
- Detectable levels of PFAS found in each well

#### **Regulatory – OEPA Proposed Limits for PFAS**

- Village currently in compliance with OEPA Limits (PFAS levels < 70 ppt)
- PFAS levels are currently higher than proposed Federal EPA limit (4 ppt)
- New Federal EPA limits are expected to be released early this year

#### Age – Past Useful Service Life

- Wells  $\approx$  70 years old
- Water Tower  $\approx$  75 years old

### WHAT IS PFAS?

#### Per- and Polyfluorinated Substances (PFAS):

» Man-made chemicals used in many products

#### **Concerns:**

- » According to the Federal EPA, studies indicate the potential for both short- and long-term adverse health effects when levels are above the proposed maximum contaminant level (MCL) for periods of time.
- » The proposed federal Maximum Contaminant Level for PFAS: 4 parts per trillion (ppt)

#### **Personal Options:**

- Home treatment, such as activated carbon or reverse osmosis, may be helpful in reducing levels (Environmental Protection Agency's website <u>epa.gov</u>)
- » Health effects (Centers for Disease Control and Prevention website <u>cdc.gov</u>)



### WELL TESTING RESULTS

| Well<br>Number | PFAS<br>Compound | OEPA<br>Testing<br>Results<br>(2021) | Pace<br>Analytical<br>Testing<br>Results (2023) | Proposed<br>Federal EPA<br>Limit | Hazard<br>Index |
|----------------|------------------|--------------------------------------|-------------------------------------------------|----------------------------------|-----------------|
| Well 1         | PFOS             | 6.53 ppt                             | ND                                              | 4 ppt                            | -               |
| Well 2         | PFOS             | 22.6 ppt                             | 6.4 ppt                                         | 4 ppt                            | -               |
|                | PFHxS            | 24.7 ppt                             | ND                                              | 10 ppt; HI: 1                    | HI: 2.74        |
| Well 3         | PFOS             | -                                    | 23.0 ppt                                        | 4 ppt                            | -               |
| Well 4         | PFOS             | -                                    | 13.0 ppt                                        | 4 ppt                            | -               |
|                | PFBS             | -                                    | 17.0 ppt                                        | 10 math III. 1                   | LH. 2.10        |
|                | PFHxS            | -                                    | 28.0 ppt                                        | төрр; п: 1                       | пі: 3.12        |

Note: "ND" is defined as "not detected", meaning that no traceable amount was found in the test results. The above results only show those compounds and levels that are identified in, and are in exceedance of, the proposed federal limits.

## **ALTERNATIVES**

#### 1. Do Nothing

#### 2. Local Treatment

- » Granular Activated Carbon (GAC)
- » Ion Exchange (IEX)
- » Reverse Osmosis (RO)

#### 3. Regional Water Supply

- » City of Union
- » Montgomery County
- » City of Brookville





#### PROS

» "No" additional cost

CONS

Does not address PFAS contamination

issues

» Existing equipment, wells, and water tower will continue to deteriorate



### **2. LOCAL TREATMENT**

#### PROS

- » Addresses PFAS contamination
- » Village controls water rates

#### CONS

- » High cost to construct/purchase/operate
- » New treatment process for Village
- Increased operational costs labor, equipment, electric, and maintenance
- » New wellfield ~10 years



### **GAC vs IEX**

#### **Project Summary:**

- » Two vessels at each wellsite
- » New buildings to house vessels and chlorine
- » New water tower (100,000-gallon)

| Method | Space<br>Reqm't       | Backwash<br>Req′d | Media   | Head loss |
|--------|-----------------------|-------------------|---------|-----------|
| GAC    | 70 ft <sup>2</sup>    | Yes               | Reuse   | 7 psi     |
| IEX    | 20-30 ft <sup>2</sup> | No                | Replace | 22 psi    |



# **REVERSE OSMOSIS (RO)**

#### **Project Summary:**

- » One RO system at each wellsite
- » New buildings to house RC systems and chlorine
- Potential requirement for additional treatment
- » New water tower (100,000-gallon)



### **4. REGIONAL WATER SUPPLY**

#### PROS

- » Lower operational costs than local water treatment
- » Improved grant funding opportunities
  - » Private wells along route could tie in (not required)

#### CONS

- » Increased water age
- » Lose local control water supply
- » Long-term investment (50+ years)
- Reliant on supplier water supply and future regulatory requirements
- » Potential for transmission main failure





*More than a Project*<sup>TM</sup>

VV

### **REGIONAL: CITY OF UNION**

#### **Project Summary:**

- » Abandonment of existing groundwater wells
- » ~ 3 miles of 8-inch transmission line
- » Water Source: Groundwater (Great Miami River Buried Valley Aquifer)
- » 1 Booster Station
- » Water Tower (100,000 gallons) Replacement
- » New master meter and vault
- » New automated controls
- » New chemical feed equipment
- » Water Hardness
  - » Phillipsburg 380 mg/L as CaCO3
  - » Union 320 mg/L as CaCO3





W

### **REGIONAL WATER SUMMARY**

| Utility           | Est. Net Present Cost<br>over 20-Years    | Est. Capital Costs | Est. Yearly<br>Wholesale<br>Water Costs | Est.<br>Water<br>Main<br>Distance<br>(miles) | Water Source            |  |
|-------------------|-------------------------------------------|--------------------|-----------------------------------------|----------------------------------------------|-------------------------|--|
| City of Union     | \$11,800,000                              | \$8,650,000        | \$25,000                                | 3.0                                          | Union<br>(Groundwater)  |  |
| Montgomery County | 7 Not Evaluated Not Evaluated Not Evaluat |                    | Not Evaluated                           | 3.0                                          | Dayton<br>(Groundwater) |  |
| Brookville        | Not Evaluated                             | Not Evaluated      | Not Evaluated                           | 4.9                                          | Dayton<br>(Groundwater) |  |

\*Montgomery County is not interested in supplying water to Phillipsburg.



### COSTS

### **PROJECT COSTS**

- » Construction
- » Non-Construction
  - » Survey, Engineering, Permitting,
    - Land Acquisition, Legal, Financial

### **OPERATIONS**

- » Labor
- » Chemicals
- » Utilities (electric, etc.)
- » Supplies

These costs are not included in the "Project Costs"

### MAINTENANCE

- » Equipment repairs/service
- » Building repairs/service
- » Filters/media (cleaning/rotation)

### REPLACEMENT

- » Equipment
- » Piping/valves
- » Electrical/controls
- » Filters/media (new)



### **ESTIMATED TOTAL PROJECT COSTS**

|                                 | ESTIMATED<br>CONSTRUCTION COST | ESTIMATED NON-<br>CONSTRUCTION COST | TOTAL ESTIMATED<br>PROJECT COST |  |  |
|---------------------------------|--------------------------------|-------------------------------------|---------------------------------|--|--|
| Regional Water (Union)          | \$ 6,850,000                   | \$ 1,800,000                        | \$ 8,650,000                    |  |  |
| Granular Activated Carbon (GAC) | \$ 4,000,000                   | \$ 1,400,000                        | \$ 5,400,000                    |  |  |
| Ion Exchange (IEX)              | \$ 4,250,000                   | \$ 1,400,000                        | \$ 5,650,000                    |  |  |
| Reverse Osmosis (RO)            | \$ 4,750,000                   | \$ 1,600,000                        | \$ 6,350,000                    |  |  |

### **NET PRESENT COST (20-50 YEARS)**

|                                                | Regionalization |                  |    | Local Treatment |    |            |    |            |
|------------------------------------------------|-----------------|------------------|----|-----------------|----|------------|----|------------|
|                                                |                 | Village of Union |    | GAC             |    | IEX        |    | RO         |
| NET PRESENT VALUE - 20 Yr.                     | \$              | 11,800,000       | \$ | 12,500,000      | \$ | 13,300,000 | \$ | 13,700,000 |
| NET PRESENT VALUE - 25 Yr.                     | \$              | 12,600,000       | \$ | 14,400,000      | \$ | 15,400,000 | \$ | 15,600,000 |
| NET PRESENT VALUE - 50 Yr.                     | \$              | 20,500,000       | \$ | 31,600,000      | \$ | 34,300,000 | \$ | 32,700,000 |
|                                                |                 |                  |    |                 |    |            |    |            |
|                                                |                 |                  |    |                 |    |            |    |            |
| Total Est. Project Costs (Const. & Non-Const.) | \$              | 8,650,000        | \$ | 5,400,000       | \$ | 5,650,000  | \$ | 6,350,000  |
| Est. Yearly Wholesale Water Costs              | \$              | 25,000           |    | N/A             |    | N/A        |    | N/A        |
| Est. Yearly Operations & Maintenance Costs     | \$              | 80,000           | \$ | 215,000         | \$ | 235,000    | \$ | 210,000    |
| Est. Replacement Costs (20 years)              | \$              | 760,000          | \$ | 1,270,000       | \$ | 1,250,000  | \$ | 1,580,000  |
| Est. Replacement Costs (50 years)              | \$              | 3,020,000        | \$ | 4,590,000       | \$ | 5,040,000  | \$ | 5,160,000  |

### **PRELIMINARY TIMELINE**

- General Plan Submittal: March 8, 2024
- OEPA Funding Nomination: March 8, 2024
- General Plan Approval: ~May 2024
- Design: May 2024 April 2025
- Permitting/Bidding: April 2025 September 2025
- Construction: October 2025 <u>April 2027</u>

### **Central Indiana**

# Water isn't only a Western problem. Here's why some Hoosiers are worried about running out



LEAP pipeline plans become flashpoint for water issues in Indiana (indystar.com)

More than a  $Project^{TM}$ 

## LEAP District Water Supply



EXHIBIT "A" - WATER SUPPLY AGREEMENT - CEG-LU

https://lebanon.in.gov/wp-content/uploads/2024/01/LU-CEG-WATER-SUPPLY-AND-INTERLOCAL-COOPERATION-AGREEMENT-9.17.23-final.pdf

*More than a Project*<sup>™</sup>

# **QUESTIONS?**

C

Kurt J. Wanninger Senior Project Manager Wessler Engineering 317-538-1891 KurtW@wesslerengineering.com



www.wesslerengineering.com